The Unique Factorization of Formal Power Series
نویسندگان
چکیده
منابع مشابه
Unique Factorization in Invariant Power Series Rings
Let G be a finite group, k a perfect field, and V a finite dimensional kG-module. We let G act on the power series k[[V ]] by linear substitutions and address the question of when the invariant power series k[[V ]] form a unique factorization domain. We prove that for a permutation module for a p-group in characteristic p, the answer is always positive. On the other hand, if G is a cyclic group...
متن کاملUnique Factorization in Generalized Power Series Rings
Let K be a field of characteristic zero and let K((R≤0)) denote the ring of generalized power series (i.e., formal sums with well-ordered support) with coefficients in K, and non-positive real exponents. Berarducci (2000) constructed an irreducible omnific integer, in the sense of Conway (2001), by first proving that an element of K((R≤0)) that is not divisible by a monomial and whose support h...
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics
سال: 1971
ISSN: 1883-4345,0579-3068
DOI: 10.5036/bfsiu1968.3.1